Ò»ÀàµäÐ͸߿¼ÊÔÌâµÄÉÍÎöÓëÑо¿
²»µÈʽÊÇÖÐѧÊýѧµÄÖ÷ÒªÄÚÈÝ£¬ÊÇÿÄê¸ß¿¼±Ø¿¼ÄÚÈÝ£¬¼¸ºõÉæ¼°Õû¸ö¸ßÖÐÊýѧµÄ¸÷¸ö²¿·Ö¡£²»µÈʽµÄÖ¤Ã÷ÔòÊǸßÖÐÊýѧÖжÔÂß¼ÍÆÀíÄÜÁ¦ÒªÇó½Ï¸ßµÄÄÚÈÝ£¬ÊÇÖÐѧÊýѧµÄÒ»¸öÄѵ㡣½üÄêÀ´£¬ËäÈ»µ»¯Á˵¥´¿µÄÖ¤Ã÷Ì⣬µ«ÊÇÒÔÄÜÁ¦Á¢ÒâÓëÖ¤Ã÷ÓйصÄ×ÛºÏÌâȴƵ·±³öÏÖ£¬ÓÈÆäÓëÒ»´Îº¯Êý£¬¶þ´Îº¯Êý·ÅÔÚÒ»Æð×ۺϿ¼²éÂß¼ÍÆÀíÄÜÁ¦ÊǸ߿¼¿¼²éµÄÒ»ÏîÖØÒªÄÚÈÝ£¬ÇÒ²»µÈʽµÄÖ¤Ã÷ÀúÀ´ÄѶȴó£¬×ÛºÏÐÔÇ¿£¬½áºÏÒÔÏÂÀýÌ⣬ϸÐÄ´§Ä¦£¬Ò²ÊÇÓÐÒ»¶¨¹æÂÉ£¬¼¼ÇÉ¿ÉÑ°¡£
Àý1£¨1996¡¤È«¹ú£©ÒÑÖªa¡¢b¡¢cÊÇʵÊý£¬º¯Êýf(x)=ax2+bx+c£¬g(x)=ax+b, µ±-1¡Üx¡Ü1ʱ,f(x)¡Ü1
¢ÅÇóÖ¤£ºc¡Ü1 ¢Æµ±x¡Ü1ʱ, g(x)¡Ü2 ¢ÇÉèa>0, µ±-1¡Üx¡Ü1ʱ, g(x)µÄ×î´óֵΪ2£¬Çóf(x).Ö¤Ã÷£º(1) ÓÉÌõ¼þÖª£ºf(0)=c¡Ü1
(2) ¡ßg(x)=ax+bΪһ´Îº¯Êý, ¡àÒªÖ¤£ºg(x)¡Ü2, ÔòÖ»ÐèÖ¤g(-1)¡Ü2,g(1)¡Ü2¡¡¡¡
¶øg(1)=a+b=f(1)-c¡Üf(1)+c¡Ü2¡¡g(-1)=a-b=f(-1)-c¡Üf(-1)+c¡Ü2
¹Êµ±£ºx¡Ü1ʱ, g(x)¡Ü2
(3) ÒòΪa>0, Ôòg(x)ÔÚ[-1,1]ÉÏÊÇÔöº¯Êý, µ±x=1ʱȡ×î´óÖµ2, ¼´g(1)=2=a+b
Ôò£ºf(1)-f(0)=2,¡¡ÓÖÒòΪ-1¡Üf(0)=f(1)-2¡Ü1-2=-1, c=f(0)=-1£¬ÒòΪµ±-1¡Üx¡Ü1ʱ£¬f(x)¡Ü1£¬
¼´f(x)¡Ý-1£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊÖª£ºÖ±Ïßx=0Ϊf(x)ͼÏñµÄ¶Ô³ÆÖᣬÓɴ˵ãº-=0£¬¼´b=0£¬ÓÉa+b=2£¬µÃa=2£¬ËùÒÔf(x)=2x2-1¡£
¡¾ÆÀ×¢¡¿£º±¾ÌâÊÇÓнϸߵÄÄѶȣ¬ËüÖ÷Òª¿¼²é£º
1 Ò»ÔªÒ»´Î¡¢Ò»Ôª¶þ´Îº¯ÊýµÄ×îÖµ¼°µ¥µ÷ÐÔ£¬¾ø¶ÔÖµ²»µÈʽµÈÖî¶à֪ʶ¡£
2 ÍÆÀíÂÛÖ¤ÄÜÁ¦£¬ÔËËãÄÑÁ¦£¬3 Áé»îÔËÓÃ֪ʶ½âÌâ×ÛºÏÎÊÌâµÄÄÜÁ¦¡£
Àý2 £¨1997¡¤È«¹ú£©Éè¶þ´Îº¯Êýf(x)=ax2+bx+c(a>0),·½³Ìf(x)-x=0µÄÁ½¸ùx1¡¢x2£¬Âú×ã0<x1<x2<
(1)µ±x(0,x1)ʱ£¬ÇóÖ¤£ºx<f(x)<x1 £¬£¨2£©É躯Êýf(x)µÄͼÏñ¹ØÓÚÖ±Ïßx=x0¶Ô³Æ£¬ÇóÖ¤£ºx0<¡¡¡¡ .
Ö¤Ã÷¡¡£¨1£© ÁîF(x)=f(x)-x¡¡ÒòΪx1¡¢x2ÊÇ·½³Ìf(x)-x=0µÄÁ½¸ù£¬ËùÒÔ£ºF(x)=a(x-x1)¡¤(x-x2)¡¡
¶øx1<x2,¡¡x(0,x1) ¹ÊF(x)>0ºã³ÉÁ¢£¬¼´f(x)>x.
ÓÖf(x)-x1=a(x-x1)(x-x2)+x-x1¡¡=(x-x1)[a(x-x2)+1]
ÒòΪ0<x<x1<x2<¡¡¡¡ ËùÒÔ£ºx1-x>0 1+a(x-x2)=1+ax-ax2>1-ax2>0
µÃf(x)-x1<0 ¡¡¼´f(x)<x1¡¡ ¡¡ ¹Ê£ºx<f(x)<x1
£¨2£©ÒÀÌâÒâÖª:x0= -,ÒòΪx1¡¢x2ÊÇ·½³Ìf(x)-x=0µÄ¸ù, ¼´x1¡¢x2ÊÇ·½³Ìax2+(b-1)x+c=0µÄ¸ù
ËùÒÔ£ºx1+x2= ¡¡¡¡ x0= - = =¡¡¡¡
ÓÖÒòΪax2<1, ËùÒÔ: x0< =¡¡¡¡ .
¡¾ÆÀ×¢¡¿£º¢Ù ±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯Êý£¬Ò»Ôª¶þ´Î·½³Ì£¬Ò»Ôª¶þ´Î²»µÈʽ£¬×÷²î·¨Ö¤Ã÷²»µÈʽ£¬ÒÔ¼°ÍÆÀíÔËËãÄÜÁ¦£¬¢Ú2±¾ÊÔÌâÓÐÈçÏÂÌص㣺£¨Ò»£© ¿¼²éµÄ֪ʶÃæÏ൱¿í£¬£¨¶þ£© ¿¼²éµÄ¶¼ÊÇ»ù´¡ÖªÊ¶£¬»ù±¾·½·¨£¬ÒÔ¼°»ù±¾ÄÜÁ¦£¬£¨Èý£©£º½«¶þ´Îº¯Êý£¬Ò»Ôª¶þ´Î·½³Ì£¬Ò»Ôª¶þ´Î²»µÈʽµÈ֪ʶÓлúµÄÈÚΪһÌå¡£
Àý3 £¨2000¡¤½ËÕ£©ÒÑÖªa>0, º¯Êýf(x)=ax-bx2, £¨1£©µ±b>0ʱ, Èô¶ÔÈÎÒâx€R,¶¼ÓÐf(x)¡Ü1 , Ö¤Ã÷£ºa¡Ü2¡¡ (2)µ±b>1ʱ,Ö¤Ã÷:¶ÔÈÎÒâx€[0,1], f(x)¡Ü1µÄ³äÒªÌõ¼þÊÇb-1¡Üa¡Ü2, (3)µ±0<b¡Ü1ʱ, ÌÖÂÛ£º¶ÔÈÎÒâx€[0,1], f(x)¡Ü1µÄ³äÒªÌõ¼þ.
Ö¤£º¢ÙÒÀÌâÒâ,¶ÔÈÎÒâx€R¶¼ÓÐf(x)¡Ü1, ¹Êf()= ¡Ü1, ÒòΪa>0, b>0, ËùÒÔ£ºa¡Ü2
¢Ú(±ØÒªÐÔ)£ºÒòΪ¶ÔÈÎÒâx€[0,1], f(x)¡Ü1£¬Ôòf(1)¡Ý-1, ¼´a¡Ýb-1, ÓÖb>1,Ôò0<<1ÓÚÊÇ: f()¡Ü1, ¼´a¡Ü2, ¹Ê£ºb-1¡Üa¡Ü2¡¡¡¡(³ä·ÖÐÔ)£ºÒòΪb>1,a¡Ýb-1,¶ÔÈÎÒâx€[0,1],
Ôò£ºax-bx2¡Ýb(x-x2)¡Ý-x¡Ý-1, ¼´f(x)¡Ý-1, ÓÖb>1,a¡Ü2, Ôòax-bx2¡Ü2x-bx2=-(x-1)2+1¡Ü1
,ËùÒÔ£º-1¡Üf(x)¡Ü1, ¹Êµ±b>1ʱ,¶ÔÈÎÒâx€[0,1], f(x)¡Ü1µÄ³äÒªÌõ¼þÊÇb-1¡Üa¡Ü2
¢ÛÒòΪa>0, 0<b¡Ü1ʱ,¶ÔÈÎÒâx€[0,1], f(x)¡Ü1, Ôòf(1)¡Ü1===>f(1)¡Ü1¼´a¡Üb+1
Èôa¡Üb+1==>f(x)¡Ü(b+1)x-bx2¡Ü1 ,f(x)=ax-bx2¡Ý-bx2¡Ý-b¡Ý-1, ¼´f(x)¡Ý-1¹Ê-1¡Üf(x)¡Ü1.
ËùÒÔ£º¶ÔÈÎÒâx€[0,1], f(x)¡Ü1µÄ³äÒªÌõ¼þÊÇa¡Üb+1
¡¾ÆÀ×¢¡¿£º±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄ×îÖµ¡¢²»µÈʽµÄÖ¤Ã÷ÒÔ¼°³äÒªÌõ¼þµÄ¸ÅÄîµÈÄÚÈÝ£¬ÄѶȽϴó£¬ÍÆÀíÄÜÁ¦ºÍÔËËãÄÜÁ¦ÒªÇó½Ï¸ß¡£
¡¾×ÛºÏÆÀ×¢¡¿£ºÒÔÉÏÈýÀý¸ß¿¼Ì⣬¾ùÊÇÄѶȽϴóµÄ×ÛºÏÌ⣬Ö÷Òª¿¼²é¶þ´Îº¯ÊýÓë²»µÈʽ£¬¿¼µãÈçÏ£º1 ¶þ´Îº¯ÊýµÄͼÏóÒÔ¼°¶Ô³ÆÖáÓëµ¥µ÷ÐԵĹØϵ¡£2 ¶þ´Îº¯ÊýµÄº¯ÊýÖµ¼°×îÖµ£¬ÓÐʱҲÉæ¼°Ò»´Îº¯Êý¡£3 ²»µÈʽ֤Ã÷£¬Ö÷ÒªÀûÓ÷ÅËõ·¨¡£
Õë¶ÔÒÔÉÏ¿¼²éµÄÄÚÈÝ£¬¿ÉÒÔ²ÉÈ¡ÒÔϵĽâÌâ²ßÂÔÓë¼¼ÇÉ£º
¢Ù ÉîÈëÀí½â¶þ´Îº¯Êý£¬Ò»Ôª¶þ´Î·½³Ì£¬Ò»Ôª¶þ´Î²»µÈʽÈýÕßÖ®¼äµÄ¹Øϵ£¬Êʵ±½èÖúͼÏóÀ´¼ÓÒÔ·ÖÎö£¬ÓÈÆäҪעÒâÅбðʽÕâÒ»Ìõ¼þ¡£
¢Ú ¶ÔÓÚº¯Êýµ¥µ÷ÐÔµÄÌÖÂÛ£¬Àë²»¿ª¶Ô³ÆÖáÓëËùÌÖÂÛÇø¼äµÄ¹Øϵ£¬
¢Û Ò»´Îº¯ÊýÓë¶þ´Îº¯Êý¾ùΪ»ù±¾³õµÈº¯Êý£¬ÆäͼÏóºÍÐÔÖʾù¾ß±¸Ò»¶¨µÄÁ¬ÐøÐԺ͵¥µ÷ÐÔ£¬¹Ê¶ÔÆäÇø¼äÉÏÖµÓò»ò×îÖµµÄÌÖÂÛ£¬Ö»ÐèÑо¿ÆäÇø¼äµÄÁ½¸ö¶ËµãÓ붥µã¼´¿É£¬ÕâÒ»¿¼µãӦΪ±Ø¿¼ÄÚÈÝ£¬Ðë¼ÓÒÔÖØÊÓ¡£
¢Ü ²»µÈʽµÄÖ¤Ã÷°üº¬ÒÔÏÂÁ½¸ö·½Ã棺һÊÇ»ù±¾µÄÖ¤Ã÷£¬ÀûÓÃ×÷²î»ò¼òµ¥µÄ·ÅËõ¼´¿ÉÍê³É£¬¶þÊǺ¬¾ø¶ÔÖµµÄ²»µÈʽ£¬Òª½áºÏ¾ø¶ÔÖµ²»µÈʽ¶¨Àí¼°ÍÆÂÛ£¬ÇÉÃî¶øÇ¡µ±µÄ·ÅËõ£¬½«»á´ïµ½Ô¤ÆÚµÄЧ¹û£¬Í¬Ê±×¢ÒâÔËÓÃËù¸øÇø¼äµÄ¶ËµãÖµ£¬ÉõÖÁÊÇÇø¼äµÄÖеãÖµËù¶ÔÓ¦µÄº¯ÊýÖµ.
ÏÂÃæÔÙ¸ø³öÏÖÁ½Àý£¬ÔËÓÃÒÑÖªµÄ¼¼ÇÉ·½·¨£¬ÊÔÒ»ÊÔÄÜ·ñ½â¾ö£¡
Àý4£¬ÒÑÖª¶þ´Îº¯Êýf(x)=ax2+bx+c,µ±-1¡Üf(x)¡Ü1ʱ, f(x)¡Ü1.
ÇóÖ¤£º(1) c¡Ü1,b¡Ü1,a¡Ü2 (2) µ±x¡Ü2ʱ, f(x)¡Ü7
Ö¤Ã÷£º(1) ÓÉÓÚµ±-1¡Üx¡Ü1ʱ, f(x)¡Ü1.Ôòf(0)¡Ü1. ¼´c¡Ü1.
ÇÒ ¡¡¡¡¡¡-1¡Üf(-1)¡Ü1¡¡¡¡¡¡ ¼´¡¡-1¡Üa-b+c¡Ü1 ¢Ù
-1¡Üf(1)¡Ü1¡¡¡¡¡¡ ¼´¡¡-1¡Üa+b+c¡Ü1¡¡¢Ú
¢Ù+¢ÚʽµÃ£º-2¡Ü2b¡Ü2¡¡¼´-1¡Üb¡Ü1<===>b¡Ü1
ÓÉ¢Ù¡¢¢ÚµÃ£º-1-c¡Üa-b¡Ü1-c,¡¡-1+c¡Üa+b¡Ü1+c, ¶ø-1¡Üc¡Ü1==>-2¡Ü-1-c,¡¡ 1+c¡Ü2
¹Ê¡¡-2¡Üa-b¡Ü2,¡¡-2¡Üa+b¡Ü2¡¡ ===>-4¡Ü2a¡Ü4,¡¡¼´a¡Ü2
(2)f(2)=4a+2b+c=2(a+b+c)+2a-c¡Ü2f(1)+2a+c¡Ü7
f(-2)=4a-2b+c=2(a-b+c)+2a-c¡Ü2f(-1)+2a+c¡Ü7
µ±-2¡Ü-¡Ü2ʱ,¡¡¡Ü2, ´Ëʱf(-)==c-¡Üc+
¡Üc+¡Ü2¡Ü7,¹Êµ±x¡Ü2ʱ, f(x)¡Ü7
Àý5 (98ÄêÏ£Íû±)Èôf(x)=ax2+bx+c(a¡¢b¡ÊR),ÔÚÇø¼ä[0,1]ÉϺãÓÐf(x)¡Ü1,
(1)¡¡ ¶ÔÓÚËùÓÐÕâÑùµÄf(x),Çóa+b+cµÄ×î´óÖµ¡£
(2)¡¡ (2)ÊÔ¸ø³öÒ»¸öÕâÑùµÄf(x),ʹµÃa+b+cȷʵȡµ½×î´óÖµ¡£
¡¾²ßÂÔ¡¿£º½«a¡¢b¡¢cÓÃÌØÊâÖµf(0),f(1),f()µÈÀ´±íʾ£¬½èÖúÌØÊâÖµµÄÐÔÖÊÇó½â¡£
¡¾½âÎö¡¿(1)ÓÉf(1)=a+b+c, f(0)=c ,f()=a+b+c,¡¡¿É½âµÃa=2f(1)-4f()+2f(0),
b=4f()-3f(0)-f(1),¡¡c=f(0), ¶øf(1)¡Ü1, f(0)¡Ü1,¡¡f()¡Ü1
¹Ê¡¡a+b+c=2f(1)-4f()+2f(0)+4f()-3f(0)-f(1)+f(0)
¡Ü2f(1)+4f()+2f(0)+4f()+3f(0)+f(1)+f(0)¡Ü17
ËùÒÔa+b+cµÄ×î´óֵΪ17
(2)¡¡ ÓÉ(1)Öª£¬ÉÏʽȡ¡°=¡±µÄÌõ¼þÖÁÉÙÓ¦Âú×ã: f(0)=1, f(1)=1, f()=1
¹Êx=¡¡Ó¦Îªº¯Êýy=f(x)µÄ¶Ô³ÆÖá, Ôò¿ÉÉèf(x)=a(x-)2¡À1
ÔÙ½«f(0)=1, f(1)=1´úÈë¼ìÑéµÃ£ºf(x)=8x2-8x+1
¡¾ÆÀ×¢¡¿ Ò»°ãµØ£¬¶Ôf(x)=ax2+bx+c,Ò²³£×÷Èçϱ任£º
a=2f(1)-4f()+2f(0),¡¡ b=4f()-3f(0)-f(1),¡¡¡¡ c=f(0).
ͨ¹ý¶ÔÒÔÉϼ¸¸öÏà¹ØÊÔÌâµÄÌÖÂÛÑо¿£¬·¢ÏÖ´ËÀà×ÛºÏÌâÉ漰֪ʶÃæ¹ã£¬ÄѶȴ󣬵«²¢²»ÊÇÊøÊÖÎ޲ߣ¬Î޼ƿÉÊ©£¬Ö»ÒªÎÒÃǾ²ÏÂÐÄÀ´£¬×ÐϸÑо¿¶þ´Îº¯ÊýµÄͼÏñ¼°ÐÔÖÊÌØÕ÷£¬½áºÏ²»µÈʽ£¬²ÉÈ¡Êʵ±µÄ½âÌâ˼·Óë¼¼ÇÉ£¬Ò²Ò»¶¨»á¹¦µ½×ÔÈ»³É£¬µ«ÒÔϼ¸¸ö·½ÃæµÄÄÜÁ¦±ØÐëµÃµ½¼ÓÇ¿£º
1 ÀιÌÕÆÎÕ»ù´¡ÖªÊ¶£¬×¼È·µÄÀí½âÊýѧ¸ÅÄÊìÁ·µÄÓ¦ÓÃÊýѧ¹«Ê½£¬¶¨Àí£¬Áé»îÔËÓÃÊýѧ·½·¨¡£
2 ƽʱһ¶¨ÒªÖØÊÓÒ»°ãµÄ¼ÆËãÌ⣬֤Ã÷ÌâµÄѵÁ·£¬Ç¡Ç¡ÊÇÕâЩ»ù±¾ÌâµÄÕÆÎÕΪ½â×ÛºÏÌâ´òÏÂÁËÔúʵµÄ»ù´¡¡£
3 ƽʱҪעÒâ¹éÄÉ£¬×ܽá½âÊýѧ×ÛºÏÌâµÄÒ»°ã¹æÂɼ°·½·¨£¬Ìá¸ß½âÌâÖÊÁ¿¡£