11 导数
一、选择题
1.(福建11)如果函数y=f(x)的图象如右图,那么
导函数的图象可能是( A )
2.(辽宁6)设P为曲线C:上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P横坐标的取值范围为( A )
A. B. C. D.
3.(全国Ⅰ4)曲线在点处的切线的倾斜角为( B )
A.30° B.45° C.60° D.120°
4.(全国Ⅱ7)设曲线在点(1,)处的切线与直线平行,则( A )
A.1 B. C. D.
二、填空题
1.(北京13)如图,函数的图象是折线段,其中的坐标分别为,则_________;2
函数在处的导数_________.
2.(江苏14)对于总有成立,则= 4
三、解答题
1.(安徽20)(本小题满分12分)
设函数为实数。
(Ⅰ)已知函数在处取得极值,求的值;
(Ⅱ)已知不等式对任意都成立,求实数的取值范围。
解: (1) ,由于函数在时取得极值,所以
即
(2) 方法一
由题设知:对任意都成立
即对任意都成立
设 , 则对任意,为单调递增函数
所以对任意,恒成立的充分必要条件是
即 ,
于是的取值范围是
方法二
由题设知:对任意都成立
即对任意都成立
于是对任意都成立,即
于是的取值范围是
2.(北京17)(本小题共13分)
已知函数,且是奇函数.
(Ⅰ)求,的值;
(Ⅱ)求函数的单调区间.
解:(Ⅰ)因为函数为奇函数,
所以,对任意的,,即.
又
所以.
所以
解得.
(Ⅱ)由(Ⅰ)得.
所以.
当时,由得.
变化时,的变化情况如下表:
|
|
|
|
|
|
|
| 0 |
| 0 |
|
所以,当时,函数在上单调递增,在上单调递减,在上单调递增.
当时,,所以函数在上单调递增.
3.(福建21)(本小题满分12分)
已知函数的图象过点(-1,-6),且函数的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
解:(1)由函数f(x)图象过点(-1,-6),得m-n=-3, ……①
由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,
则g(x)=f′(x)+6x=3x2+(2m+6)x+n;
而g(x)图象关于y轴对称,所以-=0,所以m=-3,
代入①得n=0.
于是f′(x)=3x2-6x=3x(x-2).
由f′(x)>得x>2或x<0,
故f(x)的单调递增区间是(-∞,0),(2,+∞);
由f′(x)<0得0<x<2,
故f(x)的单调递减区间是(0,2).
(Ⅱ)由(Ⅰ)得f′(x)=3x(x-2),
令f′(x)=0得x=0或x=2.
当x变化时,f′(x)、f(x)的变化情况如下表:
X | (-∞.0) | 0 | (0,2) | 2 | (2,+ ∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) |
| 极大值 | 极小值 |
由此可得:
当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值;
当a=1时,f(x)在(a-1,a+1)内无极值;
当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;
当a≥3时,f(x)在(a-1,a+1)内无极值.
综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.
4.(宁夏21)(本小题满分12分)
设函数,曲线在点处的切线方程为.
(Ⅰ)求的解析式;
(Ⅱ)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.
21.解:
(Ⅰ)方程可化为.
当时,.···································································································· 2分
又,
于是解得
故.········································································································· 6分
(Ⅱ)设为曲线上任一点,由知曲线在点处的切线方程为
,
即.
令得,从而得切线与直线的交点坐标为.
令得,从而得切线与直线的交点坐标为.·············· 10分
所以点处的切线与直线,所围成的三角形面积为
.
故曲线上任一点处的切线与直线,所围成的三角形的面积为定值,此定值为. 12分
5.(江西21)已知函数
(1)求函数的单调区间;
(2)若函数的图像与直线恰有两个交点,求的取值范围.
解:(1)因为
令得
由时,在根的左右的符号如下表所示
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 极小值 |
| 极大值 |
| 极小值 |
|
所以的递增区间为
的递减区间为
(2)由(1)得到,
要使的图像与直线恰有两个交点,只要或,
即或.
6.(湖南21)已知函数有三个极值点。
(I)证明:;
(II)若存在实数c,使函数在区间上单调递减,求的取值范围。
解:(I)因为函数有三个极值点,
所以有三个互异的实根.
设则
当时, 在上为增函数;
当时, 在上为减函数;
当时, 在上为增函数;
所以函数在时取极大值,在时取极小值.
当或时,最多只有两个不同实根.
因为有三个不同实根, 所以且.
即,且,
解得且故.
(II)由(I)的证明可知,当时, 有三个极值点.
不妨设为(),则
所以的单调递减区间是,
若在区间上单调递减,
则, 或,
若,则.由(I)知,,于是
若,则且.由(I)知,
又当时,;
当时,.
因此, 当时,所以且
即故或反之, 当或时,
总可找到使函数在区间上单调递减.
综上所述, 的取值范围是.
7.(辽宁22)(本小题满分14分)
设函数在,处取得极值,且.
(Ⅰ)若,求的值,并求的单调区间;
(Ⅱ)若,求的取值范围.
解:.①················································································ 2分
(Ⅰ)当时,
;
由题意知为方程的两根,所以
.
由,得.··························································································· 4分
从而,.
当时,;当时,.
故在单调递减,在,单调递增.···································· 6分
(Ⅱ)由①式及题意知为方程的两根,
所以.
从而,
由上式及题设知.························································································· 8分
考虑,
.········································································ 10分
故在单调递增,在单调递减,从而在的极大值为.
又在上只有一个极值,所以为在上的最大值,且最小值为.
所以,即的取值范围为.··············································· 14分
8.(全国Ⅰ21)(本小题满分12分)
已知函数,.
(Ⅰ)讨论函数的单调区间;
(Ⅱ)设函数在区间内是减函数,求的取值范围.
解:(1)
求导:
当时,,
在上递增
当,求得两根为
即在递增,递减,
递增
(2),且
解得:
9.(全国Ⅱ21)(本小题满分12分)
设,函数.
(Ⅰ)若是函数的极值点,求的值;
(Ⅱ)若函数,在处取得最大值,求的取值范围.
解:(Ⅰ).
因为是函数的极值点,所以,即,因此.
经验证,当时,是函数的极值点.··············································· 4分
(Ⅱ)由题设,.
当在区间上的最大值为时,
,
即.
故得.··············································································································· 9分
反之,当时,对任意,
,
而,故在区间上的最大值为.
综上,的取值范围为. 12分
10.(山东21)(本小题满分12分)
设函数,已知和为的极值点.
(Ⅰ)求和的值;
(Ⅱ)讨论的单调性;
(Ⅲ)设,试比较与的大小.
解:(Ⅰ)因为
,
又和为的极值点,所以,
因此
解方程组得,.
(Ⅱ)因为,,
所以,
令,解得,,.
因为当时,;
当时,.
所以在和上是单调递增的;
在和上是单调递减的.
(Ⅲ)由(Ⅰ)可知,
故,
令,
则.
令,得,
因为时,,
所以在上单调递减.
故时,;
因为时,,
所以在上单调递增.
故时,.
所以对任意,恒有,又,
因此,
故对任意,恒有.
11.(四川20)(本小题满分12分)
设和是函数的两个极值点。
(Ⅰ)求和的值;
(Ⅱ)求的单调区间
【解】:(Ⅰ)因为
由假设知:
解得
(Ⅱ)由(Ⅰ)知
当时,
当时,
因此的单调增区间是
的单调减区间是
12.(天津21)(本小题满分14分)
设函数,其中.
(Ⅰ)当时,讨论函数的单调性;
(Ⅱ)若函数仅在处有极值,求的取值范围;
(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
(Ⅰ)解:.
当时,
.
令,解得,,.
当变化时,,的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ↘ | 极小值 | ↗ | 极大值 | ↘ | 极小值 | ↗ |
所以在,内是增函数,在,内是减函数.
(Ⅱ)解:,显然不是方程的根.
为使仅在处有极值,必须恒成立,即有.
解此不等式,得.这时,是唯一极值.
因此满足条件的的取值范围是.
(Ⅲ)解:由条件可知,从而恒成立.
当时,;当时,.
因此函数在上的最大值是与两者中的较大者.
为使对任意的,不等式在上恒成立,当且仅当
即
在上恒成立.
所以,因此满足条件的的取值范围是.
13.(浙江21)(本题15分)已知是实数,函数。
(Ⅰ)若,求的值及曲线在点处的切线方程;
(Ⅱ)求在区间上的最大值。
(Ⅰ)解:,
因为,
所以.
又当时,,,
所以曲线在处的切线方程为.
(Ⅱ)解:令,解得,.
当,即时,在上单调递增,从而
.
当,即时,在上单调递减,从而
.
当,即时,在上单调递减,在上单调递增,从而
综上所述,
14.(重庆19)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)
设函数若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:
(Ⅰ)a的值;
(Ⅱ)函数f(x)的单调区间.
解:(Ⅰ)因
所以
即当
因斜率最小的切线与平行,即该切线的斜率为-12,
所以
解得
(Ⅱ)由(Ⅰ)知
15.(湖北17).(本小题满分12分)
已知函数(m为常数,且m>0)有极大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率为-5的直线是曲线的切线,求此直线方程.
解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,则x=-m或x=m,
当x变化时,f’(x)与f(x)的变化情况如下表:
x | (-∞,-m) | -m | (-m,) |
| (,+∞) |
f’(x) | + | 0 | - | 0 | + |
f (x) | 极大值 | 极小值 |
从而可知,当x=-m时,函数f(x)取得极大值9,
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依题意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.
又f(-1)=6,f(-)=,
所以切线方程为y-6=-5(x+1),或y-=-5(x+),
即5x+y-1=0,或135x+27y-23=0.
16.(陕西22) 本小题满分14分)
设函数其中实数.
(Ⅰ)若,求函数的单调区间;
(Ⅱ)当函数与的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;
(Ⅲ)若与在区间内均为增函数,求的取值范围.
解:(Ⅰ) ,又,
当时,;当时,,
在和内是增函数,在内是减函数.
(Ⅱ)由题意知 ,
即恰有一根(含重根). ≤,即≤≤,
又, .
当时,才存在最小值,. ,
. 的值域为.
(Ⅲ)当时,在和内是增函数,在内是增函数.
由题意得,解得≥;
当时,在和内是增函数,在内是增函数.
由题意得,解得≤;
综上可知,实数的取值范围为.