当前位置:首页 -高中数学试卷 - 高中二年级数学试题 - 正文*

高二(上)数学期末复习(四)

2014-5-11 0:19:18下载本试卷

高二数学期末复习(四)

一.选择题

1.圆x2y2+2x+6y+9=0与圆x2y2-6x+2y+1=0的位置关系是      (   )

A)相离 (B)相外切 (C)相交 (D)相内切

2.椭圆(1-m)x2my2=1的长轴长是                     (   )

A  (B  (C  (D

3.椭圆的两个焦点和中心把两准线间的距离四等分,则一焦点与短轴两端点连线的夹角是                            

 (A    (B    (C    (D            (   )

4.“ab<0”是“方程ax2+by2=c表示双曲线”的                (   )

 (A)必要不充分条件         (B)充分不必要条件

 (C)充要条件            (D)非充分非必要条件

5.设F1, F2是椭圆的两个焦点,P在椭圆上,已知P, F1, F2是一个Rt△的三个顶点,且P F1>P F2,则P F1 : P F2的值是                 (   )

 (A或2  (B  (C  (D或2

6.已知点F(, 0),直线l: x=-,点Bl上的动点,若过B垂直于y轴的直线与线段BF的垂直平分线相交于点M,则点M的轨迹是               (   )

 (A)双曲线   (B)椭圆   (C)圆   (D)抛物线

7.直线x-2y-3=0与圆x2+y2-4x+6y+4=0交于A, B两点,C为圆心,则△ABC的面积是                            

 (A)2 (B)4 (C (D)2            (   )

8.以双曲线的右焦点为圆心,且与两条渐近线相切的圆的方程是  (   )

 (A)(x+5)2+y2=9       (B)(x+5)2+y2=16

 (C)(x-5)2+y2=9       (D)(x-5)2+y2=16

9.若椭圆(m>n>0)与双曲线(s>0, t>0)有相同的焦点F1F2(ms),P是两曲线的一个公共点,则PF1·PF2的值是                 (   )

 (A   (Bms    (C    (D

10.过P(1, 0)的直线l与抛物线y2=2x交于两点M, N,O为原点,若kOM+kON=1,则直线l的方程是                                 (   )

 (A)2xy-1=0  (B)2x+y+1=0 (C)2xy-2=0  (D)2x+y-2=0

二.填空题:

11.若实数x, y满足(x-2)2+y2=1,则的取值范围是          

12.圆心在x轴上,经过原点,并且与直线y=4相切的圆的一般方程是

                            

13.椭圆x2+4y2=16被直线y=x+1截得的弦长为           

14.以抛物线y2=4x的焦点为圆心,且被抛物线的准线截得的弦长为2的圆的方程是              

三.解答题:

15.已知圆的方程x2y2=25,点A为该圆上的动点,ABx轴垂直,B为垂足,点P分有向线段BA的比λ=

(1) 求点P的轨迹方程并化为标准方程形式;

(2) 写出轨迹的焦点坐标和准线方程.

16.已知椭圆的中心在原点,焦点在x轴上,连接它的四个顶点得到的四边形的面积是4,分别连接椭圆上一点(顶点除外)和椭圆的四个顶点,连得线段所在四条直线的斜率的乘积为,求这个椭圆的标准方程.

17.设抛物线y2=2px (p>0)上各点到直线3x+4y+12=0的距离的最小值为1,求p的值.

18.直线y=x+b与双曲线2x2y2=2相交于A, B两点,若以AB为直径的圆过原点,求b的值.

19.已知椭圆的中心在原点,准线为x=±4,若过直线xy=0与椭圆的交点在x轴上的射影恰为椭圆的焦点,

(1)求椭圆的方程;

(2)求过左焦点F1且与直线xy=0平行的弦的长.

20.如图,已知F(0, 1),直线l: y=-2,圆C: x2+(y-3)2=1,

(1)若动点M到点F的距离比它到直线l的距离小1,求动点M的轨迹E的方程;

(2)过轨迹E上一点P作圆C的切线,当四边形PACB的面积S最小时,求点P的坐标及S的最小值。


参考答案

一.选择题:

题号

1

2

3

4

5

6

7

8

9

10

答案

A

B

C

A

D

D

A

D

B

D

二.解答题:

11.[-, ]           12.x2y2±8x=0

13.              14.(x-1)2y2=5

三.解答题

15.设点P(x, y)是轨迹上任意一点,点A的坐标是(x1, y1), 点B的坐标是(x1, 0),

 ∵点P分有向线段BA的比λ=,

 ∴ , ∴ , 又点A在圆x2y2=25上,

 ∴ x2y2=25, 即 (y≠0),

 椭圆的焦点坐标是(-4, 0), (4, 0), 准线方程是x=±.

16.设所求的方程为(a>b>0), 椭圆上一点为P(x0, y0),

 则椭圆的四个顶点分别为(a, 0), (-a, 0), (0, b), (0, -b),

 由已知四直线的斜率乘积为,得,

 ∵ b2x02a2y02a2b2, ∴ y02, x02,

 代入得, 又由已知2ab=4, 及a>0, b>0, 得a=2, b,

 ∴ 椭圆 方程是=1.

17.设P(x0, y0)为抛物线y2=2px上任意一点,则P到直线3x+4y+12=0的距离

  S=, 将x0=代入得S=,

 ∵ S的最小值是1, ∴ 8p>0(否则若8p≤0,得S的最小值为0) 且当y0=-时, =1, 解得p=.