资阳市2005—2006学年度高中三年级第一次质量检测
理 科 数 学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页,第Ⅱ卷3至8页. 全卷共150分,考试时间为120分钟.
第Ⅰ卷(选择题 共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.
3.考试结束时,将本试卷和答题卡一并收回.
一、选择题:本大题共12个小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目的要求的.
1.设集合等于( ).
A {1,2,3,4,5} B{1, 3} C{1,2,3} D{4,5}
2.复数等于( ).
A. B. C. D.
3.不等式的解集为( ).
A.(-∞,-3)∪(2,∞) B.(-3,2)
C.(-2,0) D.(0,2)
4.已知数列的前n项和为,则的值是( ).
A.0 B.1 C.2 D.3
5.若函数满足条件:当x<4时,f(x+1)=f(x);当x≥4时,f(x)=()x.则根据条件可以求得的值是( ).
A. B. C. D.
6.如果的( ).
A 充要条件 B. 必要不充分条件
C. 充分不必要条件 D. 既不充分也不必要的条件
7.已知则tanα的值为( ).
A. B.–2 C.2 D.
8.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各一台,则不同的取法共有( )种.
A.140 B.84 C.70 D.35
9.已知Sn是等差数列{an}的前n项和,且a2+a4+a7+a15=40,则S13的值为( ).
A.20 B.65 C.130 D.260
10.若函数内单调递减,则f(x)可以是( ).
A.1 B.cosx C.sinx D.-sinx
11.定义在实数集R上的函数的最小正周期为T,若当时,函数y=有反函数y=,则当时,函数y=的反函数是( ).
A.y= B.y=
C.y= D.y=
12.若O是平面上的定点,A、B、C是平面上不共线的三点,且满足(),则P点的轨迹一定过△ABC的( ).
A.重心 B.内心 C.外心 D.垂心
资阳市2005—2006学年度高中三年级第一次质量检测
理 科 数 学
第Ⅱ卷(非选择题 共90分)
题号 | 二 | 三 | 总分 | 总分人 | |||||
17 | 18 | 19 | 20 | 21 | 22 | ||||
得分 |
注意事项:
1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上.
2.答卷前将密封线内的项目填写清楚.
二、填空题:本大题共4个小题,每小题4分,共16分. 把答案直接填在题目中的横线上.
13.已知的展开式的第二项和第三项的系数比为2:11,则展开式中的有理项共有 项.
14.若关于x的不等式,则实数a的值是 .
15.若函数的定义域为R,则实数a的取值范围是 .
16.设是任意的平面向量,给出下列的命题:① ;②;③ ;④ ;⑤ .其中是真命题的有 (写出所有正确命题的序号).
三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知函数f(x)=x2+ax+a(a∈R).
(Ⅰ) 解不等式:f ( x )>-x ;
(Ⅱ) 若在x=1处的切线方程是y=2x+3,求a、b的值.
18.(本小题满分12分)
甲、乙、丙各进行一次射击,如果甲、乙2人各自击中目标的概率为0.8,3人都击中目标的概率是0.384,计算:
(Ⅰ)丙击中目标的概率;
(Ⅱ)至少有2人击中目标的概率;
(Ⅲ)其中恰有一人击中目标的概率.
19.(本小题满分12分)
在∆ABC中,已知三个内角A、B、C的对边是a、b、c,其中c=10,且
(Ⅰ) 判断∆ABC形状;
(Ⅱ) 若∆ABC的外接圆圆心为O,点P位于劣弧上,∠PAB=60°,求四边形ABCP的面积.
20.(本小题满分12分)
已知k,向量与之间满足关系 .
(Ⅰ) 用k表示;
(Ⅱ) 求的范围;
(Ⅲ) 若f ( k )= +在区间(0,2上是减函数,求正实数a的取值范围.
21.(本小题满分13分)
设f(x)是定义在实数集R上的奇函数,且f(x)=,
(Ⅰ) 求证:直线x=1是函数y= f(x)的对称轴;
(Ⅱ) 当时,求的解析式;
(Ⅲ) 若A=,求a的取值范围.
22.(本小题满分13分)
已知函数上是增函数.
(Ⅰ) 求实数a的取值范围;
(Ⅱ) 若数列;
(Ⅲ) 若数列满足且,试判断数列是否单调,并证明你的结论.
资阳市2005-2006学年度高中三年级第一次质量检测
理科数学试题参考答案及评分意见
一.选择题:每小题5分,共12个小题,满分60分.
1-5. BBACD;6-10. ABCCD;11-12. DA.
二.填空题:每小题4分,共4个小题,满分16分.
13.3;14.;15.;16.②⑤ .
三.解答题:
17.
(Ⅰ)由题意x2+(a+1)x+a>0,即(x+a)(x+1)>0. 故························································· 2分
当a<1时,由-a>-1,知 x<-1或x>-a ;
当a=1时,由-a=-1,知x≠-1 ;
当a>1时,由-a<-1,知x<-a或x>-1. 5分
综上,当a<1时,原不等式的解集为{xx>-a或x<-1};
当a=1时,原不等式的解集为{x xR且x≠-1} ;
当a>1时,原不等式的解集为{x x<-a或x>-1}.················································· 6分
(Ⅱ)∵函数h(x)=x3+bf (x)在x=1处的切线方程是y=2x+3,
∴ 即 ···················································································· 10分
解得∴ a=-,b=-2.················································································· 12分
18.
设甲、乙、丙各进行一次射击,击中目标的事件分别为A、B、C,则A、B、C三事件是相互独立的. 1分
由题意有:P(A)=0.8,P(B)=0.8,甲、乙、丙三人都击中目标的事件是A·B·C,且P(A·B·C)=0.384. 2分
(Ⅰ)∵P(A·B·C)=P(A)P(B)P(C)=0.384,P(A)=0.8,P(B)=0.8,
∴P(C)=0.6.······························································································································ 5分
(Ⅱ)设甲、乙、丙三人中至少有两人击中目标的事件为D,则D可分为甲、乙击中,丙未击中,甲、丙击中,乙没有击中和甲没有击中,乙丙击中,以及三人都击中,这三个事件又是互斥的.
∴P(D)=P(A·B·)+P(A··C)+P(·B·C)+P(A·B·C)
=0.8×0.8×0.4+0.8×0.2×0.6+0.2×0.8×0.6+0.384
=0.832.····················································································································· 9分
(Ⅲ)设恰有一人击中目标的事件为E,则
P(E)=P(··C)+P(··B)+P(A··)
=0.2×0.2×0.6+0.8×0.2×0.4×2
=0.152.······························································································································ 12分
答:(Ⅰ)丙击中目标的概率是0.6;(Ⅱ)至少有2人击中目标的概率是0.832;(Ⅲ)其中恰有一人击中目标的概率是0.152.
19.
(Ⅰ)∵==,∴ a≠b,A≠B .
由正弦定理可得,=,
∴ cosA·sinA=cosB·sinB,
∴ sin2A=sin2B .··················································································································· 4分
∵ A≠B,A、B是△ABC的内角,∴2A+2B=π ,∴A+B=,C=,
∴ △ABC是直角三角形.······································································································ 6分
(Ⅱ)由(Ⅰ)可得AC=8,BC=6,
又∵∠PAB=60°,连接PB,则∠APB=90°,∴ AP=AB=5.
∵∠PAB=60°,sin∠CAB=,cos∠CAB=,
∴sin∠PAC=sin(60°-∠CAB)=·-·=.··································· 10分
∴S四边形APCB=S△APC+S△ABC=·AP·PC·sin∠PAC+AC·BC
=+×8×6=-6+24=+18.············································ 12分
20.
(Ⅰ)由已知有,=1,=1,
而,∴ k2+1+2k·=2(1+k2-2k·),
∴ 6k·=1+k2 ,∴ ·=.········································································· 4分
(Ⅱ)由(Ⅰ)知,·==(+k),
故 当k>0时,·≥;当k<0时,·≤-.
又∵ -1=-·≤·≤·=1,
∴ ·的取值范围是[-1, -][, 1].···································································· 8分
(Ⅲ)由f (k)=,得(k)=-,
要使f ( k )= +在区间(0,2上是减函数,则
在上,(k)恒成立 .························································································ 10分
又(k)=-在(0, 2的最大值是-,所以只需- .
∴ ,即a的取值范围是.··········································································· 12分
另解(一):
由f (k)=,得f ′(k)=-,令f ′(k)<0.
∵ a+1>0,∴<k<,且k≠0.
∴ f (k)的减区间是(-, 0),(0, )
∴ 要使f (k)在(0, 2)为减函数,则≥2,∴a≥3.
∴ a的取值范围是[3,+∞].
另解(二):
由上可知,f (k)=+=,
设0<k1<k2≤2,则
f(k1)-f(k2)=-=
=.
∵0<k1<k2≤2,∴k1k2>0,k1-k2<0,k1k2<4,
∴当a≥3时,k1k2-a-1<0,∴ f (k1)-f (k2)>0,
∴函数y=f (k)在区间为减函数.
而当0<a<3时,0<<2,f (2)=f ()=,故函数f (x)在(0, 2)上不单调,
∴ a的取值范围是
21.
(Ⅰ)证明:设(x, f (x))是y=f (x)图象上的任意一点,
而(x, f (x))关于x=1的对称点为(2-x, f (x)),
∵ f (x)是奇函数,且f (x+2)=-f (x),
∴ f (2-x)=-f (-x)= f (x),
∴ 点(2-x, f (x))也在y=f (x)的图象上,
∴ y=f (x)的图象关于直线x=1对称.··············································································· 4分
(Ⅱ)∵ f (x)是奇函数,∴f (0)=0 .······························································································· 5分
当x(0, 1时,-x[-1, 0,又∵当-1≤x<0时,f (x)=x3 ,∴f (-x)=(-x)3
∴ f (x)=-f (-x)=x3 .
∴ 当x[-1, 1]时,f (x)=x3.
又当x1, 3]时,x-2-1, 1],∴ f (x-2)=(x-2)3. ······································ 7分
又∵f (x+2)=-f (x),∴f (x-2)=-f (x)=(2-x)3 ,f (x+4)=-f (x+2)=f (x),
∴ 4是f (x)的周期.················································································································· 9分
又当x3, 5]时,x-4-1,1],∴f (x)=f (x-4)=(x-4)3,
∴ f (x)=······························································································ 11分
(Ⅲ)由前可知,f (x)的值域是[-1, 1],∴ f (x) ≤ 1
∴要使 f (x) >a有解,则a<1, ∴ a的取值范围是(-∞, 1).································ 13分
22.
(Ⅰ)由于f (x)在(0, 1)上是增函数,
∴ (x)=+a≥0在(0, 1)上恒成立,∴ a≥-恒成立.
而-2<x-2<-1,∴-1<<-,<-<1,
∴ a≥1,即a的取值范围是.················································································· 4分
(Ⅱ)先用数学归纳法证明当n时,有0<an<1.
(1)当n=1时,由题设知a1∈(0, 1)命题成立。
(2)假设当n=k时命题成立,即0<ak<1。则当n=k+1时,ak+1=ln(2-ak)+ak,
由(Ⅰ)可知,当a=1时,是增函数。
∴0﹤ak+1=ln(2-ak)+ak<1,
∴当n=k+1时,命题成立。
∴ 当n时,有0<an<1.····························································································· 8分
∴ an+1-an=ln(2-an)>0 , ∴ an+1>an,nN .······················································· 9分
(Ⅲ)数列{bn}不具有单调性.
令g(x)=2ln(2-x)+x,
则(x)=1-当x(1, 2)时,(x)<0,
∴ g(x)=2 ln (2-x)+x在(0, 2)上是减函数.································································ 11分
∵ b1(0, 1),b2=2 ln (2-b1)+b1>1,且b2<2ln2<2
∴ b3=2 ln (2-b3)+b2<2 ln (2-1)+1=1,
∴ b1<b2,而b2>b3,∴ {bn}不具有单调性.································································ 13分
另解:
令b1=,则b2=2ln(2-b1)+b1=2 ln +=ln +(1, 2),
而b3=2 ln (2-b2)+b2<1.
由此可知,{bn}不具有单调性.