数学文科:模拟试卷五
一、选择题:
1. 设集合A={ф,a,{a}},下面结论正确的是( )
(A) {a}是A的一个元素,又是A的一个子集
(B) 集合A中含有两个元素
(C) 集合A中只有一个元素a
(D) 以上结论都正确
2. 下列每组两个函数,具有相同图象的一组是( )
(A) y=log|x-2|,y=log(x-2)
(B) (a > 0且a≠1)
(C)
(D) , (a > 0且a≠1)
3. 已知直线a、b、c与平面α,若a⊥b则有( )
(A) b与a在α内的射影垂直
(B) 当c∥b时,a⊥c
(C) 当b、c是异面直线时,α与c不能垂直
(D) 当a⊥α,且cα时,b∥c
4. 如果两数的等差中项是3,等比中项是2或-2,那么以这两个数为根的一元二次方程是
( )
(A)x-3x+4=0 (B)x-6x±2=0
(C)x+6x±4=0 (D)x-6x+4=0
5. 若展开式中的第六项系数最大,则展开式中不含x的项为( )
(A)252 (B)5040
(C)462 (D)不存在
6. 下列函数中,既是区间(0,)上的增函数,又是以π为周期的偶函数的是( )
(A) y=lgsin2x (B) y=|sinx|
(C) y=cos2x (D) y=2
7. 已知cos(π+A)=, A是三角形的内角,则的值为( )
(A) (B)
(C) (D)
8. 已知直线y=-x+m与曲线有两个不同的交点,则实数m的取值范围是
( )
(A) [0, -1] (B) [0,- -1]
(C) [0, +1] (D) [--1,-1]
9. 如果夹在两个平行平面间的圆锥、球、圆柱在这两个平面上的射影都是等圆
(圆锥、圆柱的底在一个平面上),那么它们的体积比等于( )
(A) 1::3 (B) 1:2:3
(C) ::1 (D) 1:2:4
10. 将6个人排成两排,每排3人,其中甲只能排在第二排,共有不同的排法总数为( )
(A) (B)
(C) (D)
11. “k>9”是“曲线=1是椭圆”的( )
(A) 充分不必要条件 (B) 必要不充分条件
(C) 充要条件 (D) 不充分也不必要条件
12. 在等比数列{an}中,a1+a2+a3=6, a2+a3+a4=-3,则a3+a4+…+a8等于( )
(A) (B)
(C) (D)
13. 要得到函数y=-cos2x的图象,需要将函数y=sin2x的图象( )
(A) 向左平移 (B) 向右平移
(C) 向左平移 (D) 向右平移
14. 若0<a<b,且a+b=1,则下列四个数中,最大的是( )
(A) -1 (B) log2b
(C) log2a+log2b+1 (D) log2(a+ab+ab+b)
15. 若,则使函数f(x)=sin(x-a)+cos(x-a)为偶函数的常数a的不同值有
( )
(A) 0个 (B) 1个
(C) 2个 (D) 3个
二、填空题
16. 不等式 的解集为( )。
(A){x|x≤+或x>} (B){x|x≤-或x>}
(C){x|x≤-或x≠} (D){x|x≥-或x>}
[分析解答]
17. 函数的图象与函数g(x)的图象关于直线y=x为对称,则g(3)= ( )。
[分析解答]
18. csc40°+ctg80°的值等于( )
(A) (B)
(C) (D)
[分析解答]
19. 抛物线的焦点在y轴上,准线与椭圆的左准线重合,该抛物线经过
已知椭圆的右焦点,则它的对称轴方程为($S*C$)。
(A) (B)
(C) (D)
[分析解答]
三、解答题:
20.已知复数z=(1-cosθ+isinθ),其中θ ∈(0,),求argz及|z|($S*D$)。
(A)argz=,|z|=32sin (B)argz=,|z|=32sin
(C)argz=,|z|=32sin (D)argz=,|z|=32sin
[分析解答]
21. 已知函数,
(1) 求f(x)的定义域;( )
(A) (-120,0)∪(0,+∞) (B) (-∞,0)∪(0,+120)
(C) (-∞,+∞) (D) (-∞,0)∪(0,+∞)
[分析解答]
(2) 判断f(x)的奇偶性,并说明理由;
[分析解答]
(3) 设函数, x∈(0,+∞),求g (x)。( )
(A),x∈(,-∞) (B),x∈(,+∞)
(C),x∈(,+∞) (D),x∈(,+∞)
[分析解答]
22. 已知斜三棱柱ABC—A1B1C1的底△ABC为直角三角形,∠C=90°;侧棱与底面成60°角, B1点在底面射影D为BC中点。
(1) 求证AB1⊥BC1; |
[分析解答]
(2) 若侧面A1ABB1与C1CBB1成30°的二面角,BC=2cm,求四棱锥A—B1BCC1的体积。( )
(A) (B) (C) (D) |
[分析解答]
23. 有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后回运的费用不同,已知每单位距离A地的运费是B地运费的3倍,且A、B两地距离为10km,顾客选择A或B地购买这件商品的原则是,包括运费和价格的总费用较低。求A、B两地的售货区域的分界线的曲线形状,并指出在曲线上、曲线内、曲线外的居民应如何选择购货地点。( $S*D$ )
(A)圆C内的居民应从B地购货,圆C外的居民应选择A地购货;圆C上的居民可任意。
(B)圆C内的居民应从A地购货,圆C外的居民应选择A地购货;圆C上的居民可任意。
(C)圆C内的居民应从B地购货,圆C外的居民应选择B地购货;圆C上的居民可任意。
(D)圆C内的居民应从A地购货,圆C外的居民应选择B地购货;圆C上的居民可任意。
[分析解答]
24. 已知n∈Z且n≥2,a>1,求证
[分析解答]
25. 设F是椭圆的左焦点,M是C1上任意一点,P是线段FM
上的点,且满足条件:|FM|:|MP|=3:1,求点P的轨迹C2。
[分析解答]
参 考 答 案
一、
1. A
[分析解答]
显而易见(A)对
2. B
[分析解答]
从定义域是否相同去考虑
3. B
[分析解答]
只有(B)成立
4. D
[分析解答]
x1+x2=6, x1·x2=4
5. A
[分析解答]
n=10,第六项为常数项
6. B
[分析解答]
从偶函数知(B)、(C)对,再从(0,)上递增知(B)对
7. B
[分析解答]
而
8. A
[分析解答]
画图解之
9. B
[分析解答]
实际上等高,且柱、锥的底面半径与球的半径相等。
10. D
[分析解答]
分两步,先排甲:,再排其他五个人
11. B
[分析解答]
k=30, 方程不表示椭圆。
12. B
[分析解答]
由已知得a1=8, q=-
13. C
[分析解答]
14. B
[分析解答]
可用特殊值去检验如令
15. D
[分析解答]
,依题意 -π<a<π
二、
16. B
[分析解答] 提示:{x|x≤-或x>}
>3 => >x-1
17. 4
[分析解答]
3= +1 => x=4
18. B
[分析解答]
19. C
[分析解答]
注意点(1,0)到点(0,h)的距离等于5,而对称轴为y=h。
三、
20. D
[分析解答] ∵1-cosθ+isinθ =2sin +2isin cos
=2sin [cos(-)+isin(-)]
∵θ∈(0,),∴ ∈(0,) ∴ sin >0,
∴z=32sin [cos()+isin()]
∵sin >0, ∴|z|=32sin
又∵2π<<,
∴0< -2π=<,
∴argz= -2π=
∴argz=,|z|=32sin
21. (1) B
[分析解答]
令2 -1≠0, ∴2≠1, ∴x≠0
∴f(x)定义域为(-∞,0)∪(0,+∞)
(2) [分析解答]
任取x∈(-∞,0)∪(0,+∞),则-x∈(-∞,0)∪(0,+∞)
∵f(x)-f(-x)=x()
∴f(x)=f(-x) ∴f(x)是偶函数。
(3) C
[分析解答]
由已知g(x)=,x∈(0,+∞) ∴ ,x∈(0,∞)
令y=g(x), ∵ ≠0,∴y≠, ∴
∴2y2-2y=2+1 ∴ (2y-1)2=2y+1
∵y≠,2y-1≠0 ∴ 2=
∵x>0, ∴2>1
∴ >1, ∴ >0, ∴y>
∴ ,
∴ ,x∈(,+∞)
22. (1)
[分析解答]
证明:连B1D,∵D是B1在底面ABC上的射影,∴B1D⊥平面ABC。
∵AC在平面ABC内,∴B1D⊥AC 又∵∠C=90°,BC⊥AC
B1D∩BC=D,B1D、BC平面BC1 ∴AC⊥平面BC1
连B1C,∴B1C是AB1在平面BC1上的射影。
又∵∠B1BD是侧棱B1B与底面所成角
∴∠B1BD=60°,而∠B1DB=90°,
∴BD=B1B ∵D是BC中点,BD=BC,
∴B1B=BC,∴B1BCC1是菱形 ∴ BC1⊥ B1C, ∴ BC1⊥AB1
(2) B
[分析解答]
∵BC=BB1=2cm,∠B1BC=60°
∴ S_·BC·sin60°=
取BB1中点M,连MC,MA,
∴BM=1cm,CM=BM+BC -2BM·BCcos60°=3
∴CM+BM=BC,∴∠BMC=90° ∴BB1⊥MC
又由(1)AC⊥平面BCC1B1,∴AC⊥BB1,
又∵AC∩MC =C, AC、MC在平面MAC内,∴BB1⊥平面MAC,
∴BB1⊥AM
∴∠CMA为侧面A1ABB1与C1CBB1所成二面角的平面角,
∴∠CMA=30°,又∵∠ACM=90°,∴AC=CMtg30°=1cm
∴V
= ··1=
23. D
[分析解答]
以A、B所在直线为x轴,A、B中点O为坐标原点,建立如图直角坐标系。 ∵|AB|=10,∴点A(-5,0),B(5,0) 设某地P的坐标为(x,y),并设A地运费为3a元/公里, 则B地运费为a元/公里,设P地 |
居民购货总费用满足条件(P地居民选择A地购货):
价格+A地运费≤价格+B地运费
即≤a
∵a>0,∴≤
两边平方,整理得: ≤
∴以为圆心,为半径的圆是A、B两地购货区域的分界线。
圆C内的居民应从A地购货,圆C外的居民应选择B地购货;圆C上的居民可任意选择。
24. [分析解答]
证明:(1)当n=2时,左式
∵a>1>0,∴a+>2 (Ι)(∵a≠)
又∵a>1,∴<1,∴a>,∴a->0,
(Ι)式两边同乘以a-,得:,
∴当n=2时,不等式成立。
(2)假设当n=k(k∈N且k≥2)时,>k()成立
∴ >(k+1)( )
又∵
∵a>1,∴a>1,a>1(∵k∈N)
∴a-1>0,a-1>0,a-1>0,a>0
∴a>
∴a>(k+1)(a-)成立
∴当n=k+1时,不等式成立。
由(1)和(2),对任意n∈N且n≥2,不等式均成立。
25. [分析解答]
(1)由椭圆C1的方程,得C1中心为(,0),a=3,,左焦点F(-1,0)
∵|FM|:|MP|=3:1,P是线段FM上的点,∴P为FM的内分点,∴FP:PM=2:1,
∴定比λ=2.设P(x,y),M(xO,yO)
xO=+3cosθ (θ 为参数)
∵M在椭圆C1上,∴
yO=
∴
消去θ ,得,即为轨迹C2的方程,∴ C2为椭圆
(2) ∵C2的左焦点F(-1,0)与C1的左焦点重合,以F为极点,射线Fx为极轴建立极坐标系。
∵,
∴ C1的极坐标方程为,
C2的极坐标方程为
∴|CD|=PD-PC=
|AB|=PA-PB=
∵|CD|=2|AB|
∴ ∴cosθ=,
∴
设直线l的斜率为K,∴K=±
∴l的方程为
(注:文科考生(1)不用参数方程求解,此处解略)