当前位置:首页 -初中数学试卷 - 初中数学中考试卷 - 正文*

中考数学专题复习2:阅读理解题

2014-5-11 0:12:27下载本试卷

中考数学专题复习2:阅读理解题

Ⅰ、综合问题精讲 :

阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题

的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法.

Ⅱ、典型例题剖析

【例1】(2005,模拟,9分)如图 2-7-1所示,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O在直线 上平移时,正方形 EFH也随之平移,在平移时正方形EFGH的形状、大小没有改变.

  (1)计算:O1D=_______,O2 F=______;

  (2)当中心O2在直线 l上平移到两个正方形只有一个公共点时,中心距O1 O2 =_________.

  (3)随着中心 O2在直线 l上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)

    :(1)O1D=2,O2 F=1;(2)O1 O2 =3;

 (2)当O1 O2>3或0≤O1 O2<1时,两个正方形无公共点;

当O1 O2=1时,两个正方形有无数个公共点;

当1<O1 O2<3时,两个正方形有2个公共点.

   点拨:本题实际上考查的知识点是“两圆的位置关系”,但形式有所变化.因此,可以再次经历探索两个圆之间的位置关系,认真分析并总结两圆五种位置关系所对应的圆心距d与半径R和r的数量关系,五种位置关系主要由两个因素确定:①公共点的个

数;②一个圆上的点在另一个圆的外部还是内部,按这两个因素为线索来探究位置关系.然后,把这种利用平移实验直观探索方法迁移到研究“两个正方形的位置关系”上来.

【例2】(2005,内江,9分)阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:

1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+,其中n是正整数。现在我们来研究一个类似的问题:1×2+2×3+…=?

观察下面三个特殊的等式:

 

将这三个等式的两边相加,可以得到1×2+2×3+3×4=

读完这段材料,请你思考后回答:

   

        

       

(只需写出结果,不必写中间的过程)

 :⑴343400(或)

每相邻两个自然数相乘再求和时可以发现结果总是

,但当每相邻三个自然数相乘再求和时就成为了。

【例3】(2005,安徽课改,8分)下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:

学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法….

(1)假如你也在课堂中,你的意见如何?为什么?

(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)

(1)答:上述两同学回答的均不全面,应该是:其余两角的大小是75°和75°或30°和120°.理由如下:

(i)当是顶角时,设底角是

, 

∴其余两角是75°和75°.

(ii)当∠A是底角时,设顶角是β,

∴其余两角分别是0°和120°.

(2)(感受中答有:“分类讨论”,“考虑问题要全面”等能体现分类讨论思想的给2分,回答出“积极发言”、“参与讨论”等与数学问题联系不紧密的语句给1分.)

点拨:此题应树立分类讨论思想,考虑问题要全面.

【例4】(2005,贵阳模拟),8分)阅读材料,解答问题:图2-7-2表示我国农村居民的小康生活水平实现程度.地处西部的某贫困县,农村人口约50万,2002年农村小康生活的综合实现程度才达到68%,即没有达到小康程度的人口约为(1-68 %)×50万= 16万.

(1)假设该县计划在2002年的基础上,到2004年底,使没有达到小康程度的16万农村人口降至  10.24万,那么平均每年降低的百分率是多少?

(2)如果该计划实现,2004年底该县农村小康进程接近图2-7-2中哪一年的水平?(假设该县人口2年内不变)

:(1)设平均每年降低的百分率为。

据题意,得 16(1-x)2 =10.24,

(1-x)2 =0.64,(1-x)= ±0.8,x1=1.8(不合题意,舍去),x2=0.2.

即平均每年降低的百分率是20%.

(2)×100%=7 9.52%.

所以根据图2-7-2所示,如果该计划实现,2004年底该县农村小康进程接近1996年全国农村小康进程的水平.

点拨:此题属于利用方程解决实际问题,但和原来的实际应用问题的情境不同,需在理解材料的基础上进行.

【例5】(2004,山西)已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值.

:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0

又∵pq≠1,∴

∴1-q-q2=0可变形为的特征

所以p是方程x 2- x -1=0的两个不相等的实数根则

根据阅读材料所提供的方法,完成下面的解答.

已知:2m2-5m-1=0,,且mn

求:的值.

:由2m2-5m-1=0知m≠0,∵mn,∴

根据的特征

是方程x 2+5 x -2=0的两个不相等的实数根 ∴

Ⅲ、综合巩固练习

(80分 80分钟)

1.(l0分)阅读以下材料并填空:

 平面上有n个点(n≥2)且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线下①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成动条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……

  ②归纳:考察点的个数n和可连成直线的条数SJ发现如下表所示:

 ③推理:平面上有n个点,两点确定一条直线,取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线.但AB与BA是同一条直线,故应除以2,即Sn=

  ④结论:Sn=

  试探究以下问题:

  平面上有n个点(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?

⑴ 分析:当仅有3个点时,可作_______个三角形;当有4个点时,可作_______个三角形;当有5个点时,可作_______个三角形……

⑵ 归纳:考察点的个数n和可作出的三角形的个数Sn发现:

⑶ 推理:

⑷ 结论:

2.(10分)如图2-7-3所示,这些等腰三角形与正三角形的形状有差异,我们把它与正三角形的接近程度称为“正度”,在研究“正度”时,应保证相似三角形的“正度”相等.设等腰三角形的底和腰分别为儿为,底角和顶角分别为以尽要求“正度”的值是非负数.同学甲认为:可用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形.

  探究:

⑴ 他们的方案哪个较为合理,为什么?

⑵ 对你认为不够合理的方案,请加以改进(给出式子即可)

⑶ 请再给出一种衡量“正度”的表达式.

3.(10分)如图2-7-4所示,甲、乙两辆大型货车于下午2:00同时从A地出发驶往P市,甲车沿一条公路向北偏东60o方向行驶,直达P市,其速度为30千米/时;乙车先沿一条公路向正东方向行驶半小时后到达B地,卸下部分货物,再沿一条通向东北方向的公路驶往P市,其速度始终为40千米/时.

⑴ 设出发后经过t小时,甲车与P市的距离为s千米,求s与t之间的函数表达式,并写出自变量t的取值范围.

⑵ 已知在P市新建的移动通讯接收发射塔,其信号覆盖面积只可达P市周围方圆30千米的区域(包括边缘地带人除此之外,该地区无其他发射塔.故甲、乙两车司机只能靠P市发射塔进行手机通话联系,问甲、乙两车司机从什么时刻开始可取得联系(精确到分钟)

4、(10分)阅读下面材料:在计算3+5+ 7+ 9 + 11+13 +15+17+19+21时,我们发现,从第一个数开始,以后 的每个数与它的前一个数的差都是一个相同的定值,具有这种规律的一列数,除了直接相加外,我们还可以用公式来计算它们的和(公式中的n表示数的个数,a表示第一个数的值,d表示这个差的定值),那么3+5+ 7+ 9 + 11+13 +15+17+19+21=×2=120.

    用上面的知识解决下列问题:为了保护长江,减少水土流失,我市某县决定对原有的坡荒地进行退耕还林,从1995年起在坡荒地上植树造林,以后每年又比上一年多植相同面积的树木改造坡荒地,由于每年因自然灾害,树木成活率,人为因素等的影响,都有相当数量的新坡荒地产生,下表为1995、1996、1997三年的坡荒地面积和植树的面积的统计数据,假设坡荒地全部种上树后,不再水土流失形成新的坡荒地.问到哪一年,可以将全县的所有坡荒地全部种上树木?

8.(10分)如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫作位似三角形.它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.

⑴ 选择;如图2-7-5⑴所示,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点.则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为( )

  A.2,点P      B.,点P   C.2,点O      D.,点O

⑵ 如图2-7-5⑵所示,用下面的方法可以画面AOB的内接等边三角形.阅读后证明相应问题:

  画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上; ②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;

  ③连接C′D′,则ΔC′D′E′是△AOB的内接三角形, 求证:△C′D′E′是等边三角形.