配几何画板测试题
25、(12分)已知Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC中点M,连结DM和BM,
(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,求证:BM=DM且BM⊥DM;
(2)如图①中的△ADE绕点A逆时针转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明。
郴州
27.如图,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,表示矩形NFQC的面积.
(1) S与相等吗?请说明理由.
(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?
(3)如图11,连结BE,当AE为何值时,是等腰三角形.
![]() | |||
![]() | |||
福州
如图①,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系。点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重合),过点F分别作x轴、y轴的垂线,垂足为G、E。设四边形BCFE的面积为S1,四边形CDGF的面积为S2,△AFG的面积为S3。
(1)试判断S1、S2的关系,并加以证明;
(2)当S3∶S2=1∶3时,求点F的坐标;
(3)如图②,在(2)的条件下,把△AEF沿对角线AC所在的直线平移,得到△A’E’F’,且A’、F’两点始终在直线AC上。是否存在这样的点E’,使点E’到x轴的距离与到y轴的距离比是5∶4,若存在,请求出点E’的坐标;若不存在,请说明理由。
河北
在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图15-1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图15-1中请你通过观察、测量BF与CG的
长度,猜想并写出BF与CG满足的数量关系,
然后证明你的猜想;
(2)当三角尺沿AC方向平移到图15-2所示的位置时,
一条直角边仍与AC边在同一直线上,另一条
直角边交BC边于点D,过点D作DE⊥BA于
点E.此时请你通过观察、测量DE、DF与CG
的长度,猜想并写出DE+DF与CG之间满足
的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平
移到图15-3所示的位置(点F在线段AC上,
且点F与点C不重合)时,(2)中的猜想是否
仍然成立?(不用说明理由)
宜昌25.如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)2+m交直线y=kx于另一点E,交 y 轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)
(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.
![]() |
(第25题图1)
(第25题图2)
(第25题图3)
连云港
28.(本小题满分14分)如图,在直角坐标系中,矩形的顶点
与坐标原点重合,顶点
在坐标轴上,
,
.动点
从点
出发,以
的速度沿
轴匀速向点
运动,到达点
即停止.设点
运动的时间为
.
(1)过点作对角线
的垂线,垂足为点
.求
的长
与时间
的函数关系式,并写出自变量
的取值范围;
(2)在点运动过程中,当点
关于直线
的对称点
恰好落在对角线
上时,求此时直线
的函数解析式;
(3)探索:以三点为顶点的
的面积能否达到矩形
面积的
?请说明理由.
2007年福建省宁德市26.(本题满分14分)
已知:矩形纸片中,
厘米,
厘米,点
在
上,且
厘米,点
是
边上一动点.按如下操作:
步骤一,折叠纸片,使点与点
重合,展开纸片得折痕
(如图1所示);
步骤二,过点作
,交
所在的直线于点
,连接
(如图2所示)
(1)无论点在
边上任何位置,都有
(填“
”、“
”、“
”号);
(2)如图3所示,将纸片放在直角坐标系中,按上述步骤一、二进行操作:
①当点在
点时,
与
交于点
点的坐标是( ,
);
②当厘米时,
与
交于点
点的坐标是( ,
);
③当厘米时,在图3中画出
(不要求写画法),并求出
与
的交点
的坐标;
(3)点在运动过程,
与
形成一系列的交点
观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.
26.(1).····································································································· 2分
(2)①;②
.······························································································· 6分
③画图,如图所示.······································································································ 8分
解:方法一:设与
交于点
.
在
中,
,
.
,
,
.
又,
.
.
.
.·············································································································· 11分
方法二:过点作
,垂足为
,则四边形
是矩形.
,
.
设,则
.
在中,
.
.
.
.
.·············································································································· 11分
(3)这些点形成的图象是一段抛物线.······································································ 12分
函数关系式:.····································································· 14分
说明:若考生的解答:图象是抛物线,函数关系式:均不扣分.
2007年福建省三明市26.(本小题满分12分)
如图①,②,在平面直角坐标系中,点
的坐标为(4,0),以点
为圆心,4为半径的圆与
轴交于
,
两点,
为弦,
,
是
轴上的一动点,连结
.
(1)求的度数;(2分)
(2)如图①,当与
相切时,求
的长;(3分)
(3)如图②,当点
在直径
上时,
的延长线与
相交于点
,问
为何值时,
是等腰三角形?(7分)
26.解:(1)∵,
,
∴是等边三角形.
∴. ··············································· 2分
(2)∵CP与相切,
∴.
∴
.
又∵(4,0),∴
.∴
.
∴.
································ 5分
(3)①过点作
,垂足为
,延长
交
于
,
∵是半径, ∴
,∴
,
∴是等腰三角形.···························································································· 6分
又∵是等边三角形,∴
=2 .··························································· 7分
②解法一:过作
,垂足为
,延长
交
于
,
与
轴交于
,
∵是圆心, ∴
是
的垂直平分线. ∴
.
∴是等腰三角形, ························································································· 8分
过点作
轴于
,
在中,∵
,
∴.∴点
的坐标(4+
,
).
在中,∵
,
∴.∴
点坐标(2,
). ································································· 10分
设直线的关系式为:
,则有
解得:
∴.
当时,
.
∴. ································································································· 12分
解法二: 过A作,垂足为
,延长
交
于
,
与
轴交于
,
∵是圆心, ∴
是
的垂直平分线. ∴
.
∴是等腰三角形.··························································································· 8分
∵,∴
.
∵平分
,∴
.
∵是等边三角形,
, ∴
.
∴.
∴是等腰直角三角形.···················································································· 10分
∴.
∴.···················································································· 12分
2007年河池市26. (本小题满分12分)
如图12, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点从
出发以每秒2个单位长度的速度向
运动;点
从
同时出发,以每秒1个单位长度的速度向
运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点
作
垂直
轴于点
,连结AC交NP于Q,连结MQ.
(1)点 (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.
![]() | |||||
![]() | |||||
![]() |
2007年河池市26. 解:(1)点 M ································································· 1分
(2)经过t秒时,,
则,
∵=
=
∴ ∴
································································· 2分
∴
·············································································································· 3分
∴ ············································································· 5分
∵∴当
时,S的值最大. ································································· 6分
(3)存在. ········································································································· 7分
设经过t秒时,NB=t,OM=2t
则,
∴=
=
··············································································· 8分
①若,则
是等腰Rt△
底边
上的高
∴是底边
的中线 ∴
∴
∴
∴点的坐标为(1,0) ·················································································· 10分
②若,此时
与
重合
∴
∴
∴
∴点的坐标为(2,0) ·················································································· 12分
湖北省荆门市2007年28.(本小题满分12分)
如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
湖北省荆门市2007年28.解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠BPE=90°.∴∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.
∴Rt△POE∽Rt△BPA.……………………………………………………………………2分
∴.即
.∴y=
(0<x<4).
且当x=2时,y有最大值.………………………………………………………………4分
(2)由已知,△PAB、△POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3).……6分
设过此三点的抛物线为y=ax2+bx+c,则∴
y=.……………………………………………………………………………8分
(3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件.………………………………9分
直线PB为y=x-1,与y轴交于点(0,-1).
将PB向上平移2个单位则过点E(0,1),
∴该直线为y=x+1.………………………………………………………………………10分
由得
∴Q(5,6).
故该抛物线上存在两点Q(4,3)、(5,6)满足条件.……………………………………12分
泰州市2007年29.如图①,中,
,
.它的顶点
的坐标为
,顶点
的坐标为
,
,点
从点
出发,沿
的方向匀速运动,同时点
从点
出发,沿
轴正方向以相同速度运动,当点
到达点
时,两点同时停止运动,设运动的时间为
秒.
(1)求的度数.
(2)当点在
上运动时,
的面积
(平方单位)与时间
(秒)之间的函数图象为抛物线的一部分,(如图②),求点
的运动速度.
(3)求(2)中面积与时间
之间的函数关系式及面积
取最大值时点
的坐标.
(4)如果点保持(2)中的速度不变,那么点
沿
边运动时,
的大小随着时间
的增大而增大;沿着
边运动时,
的大小随着时间
的增大而减小,当点
沿这两边运动时,使
的点
有几个?请说明理由.
九、(本题满分14分)
(1).··································································································· 2分
(2)点的运动速度为2个单位/秒.·········································································· 4分
(3)(
)
································································································ 6分
.
当
时,
有最大值为
,
此时.····································································································· 9分
(4)当点沿这两边运动时,
的点
有2个.····································· 11分
①当点与点
重合时,
,
当点运动到与点
重合时,
的长是12单位长度,
作交
轴于点
,作
轴于点
,
由得:
,
所以,从而
.
所以当点
在
边上运动时,
的点
有1个.··································· 13分
②同理当点在
边上运动时,可算得
.
而构成直角时交轴于
,
,
所以,从而
的点
也有1个.
所以当点沿这两边运动时,
的点
有2个.······································· 14分
无锡市2007年28.(本小题满分10分)
如图,平面上一点从点
出发,沿射线
方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以
为对角线的矩形
的边长
;过点
且垂直于射线
的直线
与点
同时出发,且与点
沿相同的方向、以相同的速度运动.
(1)在点运动过程中,试判断
与
轴的位置关系,并说明理由.
(2)设点与直线
都运动了
秒,求此时的矩形
与直线
在运动过程中所扫过的区域的重叠部分的面积
(用含
的代数式表示).
解:(1)轴.···························· 1分
理由:中,
,
.····· 2分
设交
于点
,交
轴于点
,
矩形的对角线互相平分且相等,则
,
,过点
作
轴于
,则
,
,
,
,
轴.······················· 3分
(2)设在运动过程中与射线
交于点
,过点
且垂直于射线
的直线交
于点
,过点
且垂直于射线
的直线交
于点
,则
.
,
,
,
,
.
······································ 4分
①当,即
时,
.·············· 6分
②当,即
时,设直线
交
于
,交
于
,则
,
,
,
.··········· 8分
③当,即
时,
,
………………………………………………10分
扬州市2007年26.(本题满分14分)
如图,矩形中,
厘米,
厘米(
).动点
同时从
点出发,分别沿
,
运动,速度是
厘米/秒.过
作直线垂直于
,分别交
,
于
.当点
到达终点
时,点
也随之停止运动.设运动时间为
秒.
(1)若厘米,
秒,则
______厘米;
(2)若厘米,求时间
,使
,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形与梯形
的面积相等,求
的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形
,梯形
,梯形
的面积都相等?若存在,求
的值;若不存在,请说明理由.
26.(1),
(2),使
,相似比为
(3),
,
即
,
当梯形与梯形
的面积相等,即
化简得
,
,
,则
,
(4)时,梯形
与梯形
的面积相等
梯形
的面积与梯形
的面积相等即可,则
,把
代入,解之得
,所以
.
所以,存在,当
时梯形
与梯形
的面积、梯形
的面积相等.
江西省南昌市2007年25.实验与探究
(1)在图1,2,3中,给出平行四边形的顶点
的坐标(如图所示),写出图1,2,3中的顶点
的坐标,它们分别是 , ,
;
(2)在图4中,给出平行四边形的顶点
的坐标(如图所示),求出顶点
的坐标(
点坐标用含
的代数式表示);
归纳与发现
(3)通过对图1,2,3,4的观察和顶点的坐标的探究,你会发现:无论平行四边形
处于直角坐标系中哪个位置,当其顶点坐标为
(如图4)时,则四个顶点的横坐标
之间的等量关系为
;纵坐标
之间的等量关系为
(不必证明);
运用与推广
(4)在同一直角坐标系中有抛物线和三个点
,
(其中
).问当
为何值时,该抛物线上存在点
,使得以
为顶点的四边形是平行四边形?并求出所有符合条件的
点坐标.
25.解:(1),
,
.····················································· 2分
(2)分别过点作
轴的垂线,垂足分别为
,
分别过
作
于
,
于点
.
在平行四边形中,
,又
,
.
.
又,
.·································································································· 5分
,
.
设.由
,得
.
由,得
.
.································ 7分
(此问解法多种,可参照评分)
(3),
或
,
.························· 9分
(4)若为平行四边形的对角线,由(3)可得
.要使
在抛物线上,
则有,即
.
(舍去),
.此时
.································································ 10分
若为平行四边形的对角线,由(3)可得
,同理可得
,此时
.
若为平行四边形的对角线,由(3)可得
,同理可得
,此时
.
综上所述,当时,抛物线上存在点
,使得以
为顶点的四边形是平行四边形.
符合条件的点有,
,
. 12分
乐山市2007年28.如图(16),抛物线
的图象与
轴交于
两点,与
轴交于点
,其中点
的坐标为
;直线
与抛物线交于点
,与
轴交于点
,且
.
(1)用表示点
的坐标;
(2)求实数的取值范围;
(3)请问的面积是否有最大值?
若有,求出这个最大值;若没有,请说明理由.
28.解(1)抛物线
过
,
·········································································································· 1分
点
在抛物线上,
,
点
的坐标为
.·················································································· 3分
(2)由(1)得,
,
,
.······························································································· 6分
(3)的面积有最大值,············································································ 7分
的对称轴为
,
,
点
的坐标为
,··················································································· 8分
由(1)得,
而
,······························································································ 10分
的对称轴是
,
当
时,
取最大值,
其最大值为. 12分