当前位置:首页 -初中数学试卷 - 初中数学中考试卷 - 正文*

中考数学辅导之—简单的二元二次方程组

2014-5-11 0:12:29下载本试卷

中考数学辅导之—简单的二元二次方程组

一、学习目标

1、 了解二元二次方程、二元二次方程组的概念。

2、 掌握由一个二元一次方程和一个二元二次方程组成的方程组、由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。

3、 通过解简单的二元二次方程组,进一步理解“消元、降次”的数学方法,获得对事物可以相互转化的进一步认识。

二、基础知识及应注意的问题

1、 对于二元二次方程、二元二次方程组的概念的学习,应注意联系二元一次方程、二元一次方程组的意义,在对比中加深对概念的理解。

2、 解二元二次方程组就是求方程组中两个方程的公共解(或者说明这个方程组无解);解二元二次方程组的基本思想是消元和降次,消元就是把二元化为一元,降次就是把二次降为一次;其目的就是把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程来解。

3、 对于由一个二元一次方程和一个二元二次方程组成的方程组,通常用“代入消元法”进行消元、降次,这是把二元方程转化为一元方程的基本途径。

4、 对于形如  x+y=a的方程组,不仅可以用代入法来解,而且可以联系

         xy=b

已学过的一元二次方程的根与系数的关系,把x、y看作是一个一元二次方程的两个根,通过解一元二次方程来求得二元二次方程组的解。

5、 对于由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组,求解时应注意把握如下三点:

(1)分析方程组,找出可以分解因式的那个二元二次方程的特点,并把它变形为两个二元一次方程。

(2)把两个二元一次方程分别与另一个二元二次方程组成两个二元二次方程组。

(3)用代入法分别解由一个二元一次方程和一个二元二次方程组成的这两个二元二次方程组。 

三、例题

例1:解方程组  x2+y2=25       …①  

          4x-3y=0       …②

分析:

  (1)这是一个由一个二元一次方程和一个二元二次方程组成的二元二次方程组,与解二元一次方程组类似,可以用代入法来解。

(2)方程②是一个二元一次方程,把这个方程变形为,就可把未知数x用未知数y的代数式来表示。

(3)把代入方程①,即可消去未知数x,得到一个关于y的一元二次方程,解这个方程即可得y的值,再把y的值代入,就可求出未知数x的值,从而得到方程组的解。

解:由②得:        …③

把③代入①得,()2+y2=25     

解这个方程得:y1=4, y2=-4

把y1代入③得:x1=3

把y2代入③得:x2=-3

   ∴原方程组的解为:

      x1=3     x1=-3

        y1=4,   y1=-4;

例2:解方程组  x+y=12        …①

         xy=7          …②

(解法一)由①得:x=12-y        …③

把③代入②得:y(12-y)=7

      即:y2-12y+7=0

解得:

代入③得:

代入③得:

∴原方程组的解为        

          ,      

(解法二)根据一元二次方程根与系数的关系

可把x、y看成一元二次方程的两根

解得;

∴原方程组的解为         

          ,      

例3:解方程组         …①

         xy=12          …②

(解法一):①+2×②得:(x+y)2=49   ∴x+y=±7  …③

      ①-2×②得:(x-y)2=1   ∴x-y=±1  …④

由③④可组成以下四个二元一次方程组

  x+y=7    x+y=7    x+y=-7   x+y=-7

 x-y=1    x-y=-1   x-y=1    x-y=-1

解这四个方程组得原方程组的解为:x1=4  x2=3  x3=-3  x4=-4

                  y1=3  y2=4  y3=-4  y4=-3

(解法二):①+2×②得:(x+y)2=49  ∴x+y=±7  …③

由②③可组成以下两个方程组: x+y=7   和   x+y=-7

                 xy=12       xy=12

以下如例2的(解法二),分别解出这两个方程组可得出原方程组的四组解(下略)

(解法三)由②得,代入①消去x可得关于y的特殊的四次方程,用换元法解得y的各值再分别代入即可求得原方程组的四组解(只写了思路,具体解题过程略)

(解法四)由②得:,令u=x2,v=y2

则有 u+v=25

   

再如例2的(解法二)求出u、v;最后再求出原方程组的四组解。

(只写了思路,具体解题过程略)

例4、   解方程组      …①

                    …②

解:由①得

  ∴

  ∴原方程组可化为以下两个方程组:   

                      

分别解这两个方程组得原方程组的解为  x1=4  x2=-4 x3=-3  x4=4

                      y1=3    y2=-3 y3=4   y4=-3

例5:解方程组:        …①

            …②

解:由①得:    ∴x-y=±3

  由②得:(x+2y+2)(x+2y-1)=0

    即:x+2y+2=0或x+2y-1=0

∴原方程组可化为以下四个方程组:

 x-y=3     x-y=3      x-y=-3     x-y=-3

 x+2y+2=0   x+2y-1=0    x+2y+2=0    x+2y-1=0 

解这四个方程组,得原方程组的解为:

           

例题注释:解二元二次方程组的基本思想方法是“降次”和“消元”。初中阶段主要是熟练掌握由一个二元一次方程和一个二元二次方程组成的方程组的解法,由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。前者由上述例1、例2说明用代入消元法解;后者由上述例3、例4、例5说明用降次化为几个二元一次方程组或前者形式的方程再消元求解。有一种常用的降次方法是利用分解二次多项式为两个一次式乘积而把一个二元二次方程化为两个二元一次方程的,这种降次方法一定要熟悉,对其它的降次方法如例3的(解法一)、(解法二)、(解法四)也需了解并能使用。例2的(解法二)是利用根与系数关系构造一新未知数的一元二次方程求解的简便方法,对此特殊解法也需熟悉。总之,消元和降次是数学中两种重要的常见的转化方法,利用消元可把多元转化为少元,通过降次能把高次转化为低次。

四、练习及作业

选择题:

1、 下列各组中x、y的值是方程组  x2+y2=5的解为:

                  x+y=3

A、   x=-1    B、 x=1    C、 x=2       D、 x=-2

  y=-2       y=2       y=-1        y=1

2、 解方程     …①一般应先(  )

      x2+y2=25            …②

A、 消去一个未知数         B、消去二次项   

C、把方程①的左边分解因式    D、由②得y2=25-x2并代入①

3、 方程组  x+y=3  中的x、y可以看成是一个一元二次方程的两个根,

       xy=-10

这个方程是(  )

A、          B、 

C、         D、

4、 若方程x2+y2-16=0和x2-3y+12=0有一个公共解,则y应取的值为(  )

A、 -7   B、4    C、-7和4   D、不小于4

5、 已知方程组  x2+2y2=6  有一组实数解,则m的值为(  )

         mx+y=3

A、 -1   B、1    C、±1      D、±2

6、 若  x=1是方程组 ax2+by2=9的解,那么,此方程组还有解是(  )

    y=2      bx-ay=3

A、   x=2    B、     C、     D、 x=1

y=1                 y=-2

填空题:

7、方程中,二次项是________,一次项是________,常数项是________。

8、二元二次方程xy=10的整数解为________。

9、方程组  (x-1)(y+3)=0的解有________组。

      y=x2

10、 方程化成两个二元一次方程为________。

解答题:

11、解方程组  x=y+4

        x2-5xy+6y2=0

12、 解方程组 x2-5xy+6y2=0

       

13、 用两种不同的方法解方程组:

                    ;

五、答案及提示:

1、   B   2、C   3、C   4、B   5、C   6、C

  4、提示:求两个方程的公共解可解由这两个方程组成的方程组,由方程,得,代入方程消去未知数x,得;解得y1=4,y2=-7;由y1=4得x2=0。由y2=-7得x2=-33,无实数解。∴只能取y=4

5、 提示:由方程mx+y=3得y=3-mx,代入方程x2+2y2=6得一系数中含有m的关于x的一元二次方程,令,则可得m =±1

6、 提示:将  x=1代入原方程组可解得  ,从而将原方程组变为

       y=2            

 即  ,解得    

7、 

8、        

9、   1

10、2x-y+1=0,x-y-2=0

提示:先将原方程化为,再化成:

则有:

11、   x1=6   x2=8

   y1=2   y2=4

12、              

13、   解:令,则原方程组可化为 

(方法一)由u+v=4得:u=4-v,代入,得:

即:v2-4v+3=0    ∴v1=1,v2=3

代回u=4-v,得:   即:   

     x2=1

   y1=1      y2=9

(方法二)根据一元二次方程根与系数的关系,可把u、v看成是关于t的一元二次方程t2-4t+3=0的两个实数根t1=1,t2=3

∴可得 u­1=1   u2=3,以下解法同(解法一)。

    v1=3   v­2=1