当前位置:首页 -高中数学试卷 - 高中三年级数学试题 - 正文

正态分布复习

2014-5-11 0:19:27下载本试卷

借助于标准正态分布表求值

 设服从,求下列各式的值:

(1) (2) (3)

  分析:因为用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出的情形,故需要转化成小于非负值的概率,公式:有其用武之地.

解:(1)

(2)

(3)

说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用.

求服从一般正态分布的概率

  设服从试求:

(1) (2) 

(3)  (4)

分析:首先,应将一般正态分布转化成标准正态分布,利用结论:若,则由知:其后再转化为非负标准正态分布情况的表达式,通过查表获得结果.

解:(1)

(2)

(3)

(4)

说明:这里,一般正态分布,总体小于的概率值是一样的表述,即:

服从正态分布的材料强度的概率

 已知:从某批材料中任取一件时,取得的这件材料强度服从

(1)计算取得的这件材料的强度不低于180的概率.

(2)如果所用的材料要求以99%的概率保证强度不低于150,问这批材料是否符合这个要求.

分析:这是一个实问题,只要通过数学建模,就可以知道其本质就是一个“正态分布下求随机变量在某一范围内取值的概率”的问题;本题的第二问是一个逆向式问法,只要把握实质反向求值即可.

解:(1)

(2)可以先求出:这批材料中任取一件时强度都不低于150的概率为多少,拿这个结果与99%进行比较大小,从而得出结论.

即从这批材料中任取一件时,强度保证不低于150的概率为99.73%>99%,所以这批材料符合所提要求.

说明:“不低于”的含义即在表达式中为“大于或等于”.转化“小于”后,仍须再转化为非负值的标准正态分布表达式,从而才可查表.

公共汽车门的高度

 若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在1%以下设计的,如果某地成年男子的身高(单位:㎝),则该地公共汽车门的高度应设计为多高?

分析:实际应用问题,分析可知:求的是门的最低高度,可设其为,使其总体在不低于的概率值小于1%,即:,从中解出的范围.

解:设该地公共汽车门的高度应设计高为cm,则根据题意可知:,由于

所以,

也即:

通过查表可知:

解得:

即该地公共汽车门至少应设计为189cm高.

   说明:逆向思维和逆向查表,体现解决问题的灵活性.关键是理解题意和找出正确的数学表达式.

学生成绩的正态分布

某班有48名同学,一次考试后数学成绩服从正态分布.平均分为80,标准差为10,问从理论上讲在80分至90分之间有多少人?

分析:要求80分至90分之间的人数,只要算出分数落在这个范围内的概率,然后乘以总人数即可,而计算这个概率,需要查标准正态分布表,所以应首先把这个正态总体化成标准正态总体.

解:x表示这个班的数学成绩,则x服从

z服从标准正态分布

查标准正态分布表,得:

所以,

说明:这类问题最容易犯的错误是没有转化成标准正态分布就直接求解,一般地,我们在解决正态总体的有关问题时均要首先转化成标准正态总体.

下载试卷:正态分布复习
© 2002-2014 小荷作文网www.zww.cn 版权所有 关于我们 版权说明 鄂ICP备05002343号 武汉市公安局备案号:4201502084
查找作文   要 作文投稿,请先 注册 联系邮箱: xhzww@126.com 收藏小荷 ,以免忘记 问题答疑 QQ 782880378 有问题请留言